Interplanetary and interstellar plasma turbulence
نویسندگان
چکیده
Theoretical approaches to low-frequencymagnetized turbulence in collisionless and weakly collisional astrophysical plasmas are reviewed. The proper starting point for an analytical description of these plasmas is kinetic theory, not fluid equations. The anisotropy of the turbulence is used to systematically derive a series of reduced analytical models. Above the ion gyroscale, it is shown rigourously that the Alfvén waves decouple from the electron-density and magnetic-field-strength fluctuations and satisfy the reduced MHD equations. The density and field-strength fluctuations (slowwaves and the entropymode in thefluid limit), determined kinetically, are passivelymixed by theAlfvénwaves. The resulting hybrid fluid-kinetic description of the low-frequency turbulence is valid independently of collisionality. Below the ion gyroscale, the turbulent cascade is partially converted into a cascade of kinetic Alfvén waves, damped at the electron gyroscale. This cascade is described by a pair of fluid-like equations, which are a reduced version of the electron MHD. The development of these theoretical models is motivated by observations of the turbulence in the solar wind and interstellar medium. In the latter case, the turbulence is spatially inhomogeneous and the anisotropic Alfvénic turbulence in the presence of a strong mean field may coexist with isotropic MHD turbulence that has no mean field.
منابع مشابه
ar X iv : a st ro - p h / 06 10 81 0 v 1 2 6 O ct 2 00 6 Interplanetary and interstellar plasma turbulence
Theoretical approaches to low-frequency magnetized turbulence in collisionless and weakly collisional astrophysical plasmas are reviewed. The proper starting point for an analytical description of these plasmas is kinetic theory, not fluid equations. The anisotropy of the turbulence is used to systematically derive a series of reduced analytical models. Above the ion gyroscale, it is shown rigo...
متن کاملEnergy Cascades in a Partially Ionized Astrophysical Plasma
A local turbulence model is developed to study energy cascades in the interstellar medium (ISM) based on self-consistent two-dimensional fluid simulations. The model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid with a plasma primarily through charge exchange interactions. Charge exchange interactions are ubiquitous in warm ISM plasma...
متن کاملConsequences of a Change in the Galactic Environment of the Sun
The interaction of the heliosphere with interstellar clouds has attracted interest since the late 1920’s, both with a view to explaining apparent quasi-periodic climate “catastrophes” as well as periodic mass extinctions. Until recently, however, models describing the solar wind local interstellar medium (LISM) interaction self-consistently had not been developed. Here, we describe the results ...
متن کاملModeling the Motion and Distribution of Interstellar Dust inside the Heliosphere
The interaction of dust grains originating from the local interstellar cloud with the environment inside the heliosphere is investigated. As a consequence of this interaction the spatial distribution of interstellar dust grains changes with time. Since dust grains are charged in the interplanetary plasma and radiation environment, the interaction of small grains with the heliosphere is dominate...
متن کاملPhysical structure of the local interstellar medium
The physical structure and morphology of the interstellar medium that surrounds our solar system directly effects the heliosphere and the interplanetary environment. High resolution ultraviolet absorption spectra of nearby stars and the intervening interstellar medium, observed by the Hubble Space Telescope, provide important information about the chemical abundance, ionization, temperature, ki...
متن کامل